Nonspecific hybridization scaling of microarray expression estimates: a physicochemical approach for chip-to-chip normalization.
نویسندگان
چکیده
The problem of inferring accurate quantitative estimates of transcript abundances from gene expression microarray data is addressed. Particular attention is paid to correcting chip-to-chip variations arising mainly as a result of unwanted nonspecific background hybridization to give transcript abundances measured in a common scale. This study verifies and generalizes a model of the mutual dependence between nonspecific background hybridization and the sensitivity of the specific signal using an approach based on the physical chemistry of surface hybridization. We have analyzed GeneChip oligonucleotide microarray data taken from a set of five benchmark experiments including dilution, Latin Square, and "Golden spike" designs. Our analysis concentrates on the important effect of changes in the unwanted nonspecific background inherent in the technology due to changes in total RNA target concentration and/or composition. We find that incremental changes in nonspecific background entail opposite sign incremental changes in the effective specific binding constant. This effect, which we refer to as the "up-down" effect, results from the subtle interplay of competing interactions between the probes and specific and nonspecific targets at the chip surface and in bulk solution. We propose special rules for proper normalization of expression values considering the specifics of the up-down effect. Particularly for normalization one has to level the expression values of invariant expressed probes. Existing heuristic normalization techniques which do not exclude absent probes, level intensities instead of expression values, and/or use low variance criteria for identifying invariant sets of probes lead to biased results. Strengths and pitfalls of selected normalization methods are discussed. We also find that the extent of the up-down effect is modified if RNA targets are replaced by DNA targets, in that microarray sensitivity and specificity are improved via a decrease in nonspecific background, which effectively amplifies specific binding. The results emphasize the importance of physicochemical approaches for improving heuristic normalization algorithms to proceed toward quantitative microarray data analysis.
منابع مشابه
Normalization of DNA-Microarray Data by Nonlinear Correlation Maximization
Signal data from DNA-microarray ("chip") technology can be noisy; i.e., the signal variation of one gene on a series of repetitive chips can be substantial. It is becoming more and more recognized that a sufficient number of chip replicates has to be made in order to separate correct from incorrect signals. To reduce the systematic fraction of the noise deriving from pipetting errors, from diff...
متن کاملReliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)
Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...
متن کاملOn-chip hybridization kinetics for optimization of gene expression experiments.
DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover...
متن کاملAssessing the need for sequence-based normalization in tiling microarray experiments
MOTIVATION Increases in microarray feature density allow the construction of so-called tiling microarrays. These arrays, or sets of arrays, contain probes targeting regions of sequenced genomes at regular genomic intervals. The unbiased nature of this approach allows for the identification of novel transcribed sequences, the localization of transcription factor binding sites (ChIP-chip), and hi...
متن کاملCalibration of microarray gene-expression data.
Calibration of microarray measurements aims at removing systematic biases from the probe-level data to get expression estimates that linearly correlate with the transcript abundance in the studied samples. The improvement of calibration methods is an essential prerequisite for estimating absolute expression levels, which, in turn, are required for quantitative analyses of transcriptional regula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 9 شماره
صفحات -
تاریخ انتشار 2009